skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baumann, Hannes"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. ABSTRACT ObjectiveWe experimentally tested whether adult Black Sea Bass Centropristis striata belonging to the northern stock could theoretically overwinter in Long Island Sound (LIS) and whether doing so would affect their survival, growth, and gonadal investment and the lipid and lean content of their gonad, liver, and white muscle tissues. MethodsFish were caught via hook and line in LIS before and after their offshore winter migration (October 2022 and May 2023, respectively). Fifty individuals from October were reared for 200 d under flow-through conditions and fed diets of crushed mussels or herring. At the end of the experiment, laboratory and wild fish were assessed for their growth, gonadosomatic index, hepatosomatic index, and tissue-specific lipid and lean contents. ResultsLaboratory fish experienced unfavorable winter temperatures (∼5–12°C) for more than 5 months, exhibiting negligible growth and high mortalities. Mortalities began accruing after temperatures had reached their seasonal minimum of about 5°C in early February (day 120). Mortalities were lower for fish on the mussel diet (40%) than for those on the herring diet (68%), but survivors from the latter group had higher tissue lipid contents. Wild Black Sea Bass returning to LIS in spring had higher tissue lipid contents and greater gonadosomatic indices than surviving laboratory fish on either diet. ConclusionsAt present, overwintering in LIS appears possible but likely disadvantageous for Black Sea Bass because offshore winter migration results in greater energy reserves and subsequent reproductive investment. In the future, however, warming coastal waters will continue to shorten the duration of unsuitable winter temperatures, which could become conducive to year-round inshore residency or partial migration patterns in the northern stock of Black Sea Bass. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. Phenotypic plasticity and evolutionary adaptation allow populations to cope with global change, but limits and costs to adaptation under multiple stressors are insufficiently understood. We reared a foundational copepod species,Acartia hudsonica, under ambient (AM), ocean warming (OW), ocean acidification (OA), and combined ocean warming and acidification (OWA) conditions for 11 generations (approx. 1 year) and measured population fitness (net reproductive rate) derived from six life-history traits (egg production, hatching success, survival, development time, body size and sex ratio). Copepods under OW and OWA exhibited an initial approximately 40% fitness decline relative to AM, but fully recovered within four generations, consistent with an adaptive response and demonstrating synergy between stressors. At generation 11, however, fitness was approximately 24% lower for OWA compared with the AM lineage, consistent with the cost of producing OWA-adapted phenotypes. Fitness of the OWA lineage was not affected by reversal to AM or low food environments, indicating sustained phenotypic plasticity. These results mimic those of a congener,Acartia tonsa, while additionally suggesting that synergistic effects of simultaneous stressors exert costs that limit fitness recovery but can sustain plasticity. Thus, even when closely related species experience similar stressors, species-specific costs shape their unique adaptive responses. 
    more » « less
  5. Metazoan adaptation to global change relies on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is essential to make accurate predictions for persistence in future conditions. Here, we identified the genetic variation enabling the copepod Acartia tonsa to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) over 25 generations of continual selection. Replicate populations showed a consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the allelic changes into three categories: selection, drift and replicate-specific selection, and laboratory adaptation responses. The majority of allele frequency change in warming (57%) and OWA (63%) was driven by shared selection pressures across replicates, but this effect was weaker under acidification alone (20%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%, indicating that warming is the dominant driver of selection in OWA. Despite the dominance of warming, the interaction with acidification was still critical as the OWA selection response was highly synergistic with 47% of the allelic selection response unique from either individual treatment. These results disentangle how genomic targets of selection differ between single and multiple stressors and demonstrate the complexity that nonadditive multiple stressors will contribute to predictions of adaptation to complex environmental shifts caused by global change. 
    more » « less
  6. Abstract Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod,Acartia tonsa, in future global change conditions (high temperature and high CO2). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments. 
    more » « less
  7. This dataset includes hatch and larval period for sand lance collected in 2019 and results from particle tracking runs of simulated sand lance larvae throughout the Northeast U.S. Shelf as part of Long-Term Ecological Research (NES-LTER). Release dates vary by region, corresponding to hatch and settlement dates of settling sand lance collected in 2019. Particles were depth-keeping throughout the upper 40 m to best replicate our understanding of the vertical distribution of sand lance larvae. Data were used to determine the average particle transport pathways from these sand lance habitats, including connectivity among the three hotspots, and spatial variability of connectivity within each hotspot. Further information can be found within the manuscript: Suca, J. J., Ji, R., Baumann, H., Pham, K., Silva, T. L., Wiley, D. N., Feng, Z., & Llopiz, J. K. (2022). Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31( 3), 333-352. https://doi.org/10.1111/fog.12580 
    more » « less
  8. Abstract Northern sand lance (Ammodytes dubius) are essential forage fish in most offshore, temperate-to-polar waters on the Northwest Atlantic shelf (NWA), but their population structure and genetic separation from the American sand lance (A. americanus) remain unresolved. We assembled a reference genome for A. dubius (first in the Ammodytidae) and then used low-coverage whole genome sequencing on 262 specimens collected across the species distribution (Mid-Atlantic Bight to Greenland) to quantify genetic differentiation between geographic regions based on single nucleotide polymorphisms. We found strong separation between A. dubius from locations north and south of the Scotian Shelf, largely due to massive genetic differentiation spanning most of chromosomes 21 and 24. Genetic distance increased with geographic distance in the smaller southern cluster but not in the larger northern cluster, where genetic homogeneity appeared across large geographic distances (>103 km). The two genetic clusters coincide with a clear break in winter sea surface temperature, suggesting that differential offspring survival, rather than limited transport, causes a break in realized connectivity. Nuclear and mitochondrial DNA both clearly delineated A. dubius from A. americanus, thereby confirming a species boundary through spatial niche partitioning into inshore (A. americanus) and offshore (A. dubius) sand lance species on the NWA. 
    more » « less